extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(S3×C32) = C3×C3≀S3 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 27 | | C3^2.1(S3xC3^2) | 486,115 |
C32.2(S3×C32) = C3×He3.C6 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 81 | | C3^2.2(S3xC3^2) | 486,118 |
C32.3(S3×C32) = C3×He3.2C6 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 81 | | C3^2.3(S3xC3^2) | 486,121 |
C32.4(S3×C32) = C3≀S3⋊3C3 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 27 | 3 | C3^2.4(S3xC3^2) | 486,125 |
C32.5(S3×C32) = C3≀C3⋊C6 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 27 | 9 | C3^2.5(S3xC3^2) | 486,126 |
C32.6(S3×C32) = He3.C3⋊C6 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 27 | 9 | C3^2.6(S3xC3^2) | 486,128 |
C32.7(S3×C32) = He3.(C3×C6) | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 27 | 9 | C3^2.7(S3xC3^2) | 486,130 |
C32.8(S3×C32) = C3≀C3.C6 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 27 | 9 | C3^2.8(S3xC3^2) | 486,132 |
C32.9(S3×C32) = C32×C9⋊C6 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 54 | | C3^2.9(S3xC3^2) | 486,224 |
C32.10(S3×C32) = C3×He3.4C6 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 81 | | C3^2.10(S3xC3^2) | 486,235 |
C32.11(S3×C32) = 3+ 1+4⋊2C2 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 27 | 9 | C3^2.11(S3xC3^2) | 486,237 |
C32.12(S3×C32) = 3- 1+4⋊2C2 | φ: S3×C32/C32 → S3 ⊆ Aut C32 | 27 | 9 | C3^2.12(S3xC3^2) | 486,239 |
C32.13(S3×C32) = C3×C33⋊C6 | φ: S3×C32/C32 → C6 ⊆ Aut C32 | 18 | 6 | C3^2.13(S3xC3^2) | 486,116 |
C32.14(S3×C32) = C3×He3.S3 | φ: S3×C32/C32 → C6 ⊆ Aut C32 | 54 | 6 | C3^2.14(S3xC3^2) | 486,119 |
C32.15(S3×C32) = C3×He3.2S3 | φ: S3×C32/C32 → C6 ⊆ Aut C32 | 54 | 6 | C3^2.15(S3xC3^2) | 486,122 |
C32.16(S3×C32) = (C3×He3)⋊C6 | φ: S3×C32/C32 → C6 ⊆ Aut C32 | 27 | 18+ | C3^2.16(S3xC3^2) | 486,127 |
C32.17(S3×C32) = C9⋊S3⋊C32 | φ: S3×C32/C32 → C6 ⊆ Aut C32 | 27 | 18+ | C3^2.17(S3xC3^2) | 486,129 |
C32.18(S3×C32) = He3.(C3×S3) | φ: S3×C32/C32 → C6 ⊆ Aut C32 | 27 | 18+ | C3^2.18(S3xC3^2) | 486,131 |
C32.19(S3×C32) = C3×He3.4S3 | φ: S3×C32/C32 → C6 ⊆ Aut C32 | 54 | 6 | C3^2.19(S3xC3^2) | 486,234 |
C32.20(S3×C32) = 3+ 1+4⋊C2 | φ: S3×C32/C32 → C6 ⊆ Aut C32 | 27 | 18+ | C3^2.20(S3xC3^2) | 486,236 |
C32.21(S3×C32) = 3- 1+4⋊C2 | φ: S3×C32/C32 → C6 ⊆ Aut C32 | 27 | 18+ | C3^2.21(S3xC3^2) | 486,238 |
C32.22(S3×C32) = S3×C3≀C3 | φ: S3×C32/C3×S3 → C3 ⊆ Aut C32 | 18 | 6 | C3^2.22(S3xC3^2) | 486,117 |
C32.23(S3×C32) = S3×He3.C3 | φ: S3×C32/C3×S3 → C3 ⊆ Aut C32 | 54 | 6 | C3^2.23(S3xC3^2) | 486,120 |
C32.24(S3×C32) = S3×He3⋊C3 | φ: S3×C32/C3×S3 → C3 ⊆ Aut C32 | 54 | 6 | C3^2.24(S3xC3^2) | 486,123 |
C32.25(S3×C32) = S3×C3.He3 | φ: S3×C32/C3×S3 → C3 ⊆ Aut C32 | 54 | 6 | C3^2.25(S3xC3^2) | 486,124 |
C32.26(S3×C32) = S3×C9○He3 | φ: S3×C32/C3×S3 → C3 ⊆ Aut C32 | 54 | 6 | C3^2.26(S3xC3^2) | 486,226 |
C32.27(S3×C32) = D9×C3×C9 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.27(S3xC3^2) | 486,91 |
C32.28(S3×C32) = C3×C32⋊C18 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.28(S3xC3^2) | 486,93 |
C32.29(S3×C32) = C3×C32⋊D9 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.29(S3xC3^2) | 486,94 |
C32.30(S3×C32) = C3×C9⋊C18 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.30(S3xC3^2) | 486,96 |
C32.31(S3×C32) = C9×C32⋊C6 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.31(S3xC3^2) | 486,98 |
C32.32(S3×C32) = D9×He3 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.32(S3xC3^2) | 486,99 |
C32.33(S3×C32) = C9×C9⋊C6 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.33(S3xC3^2) | 486,100 |
C32.34(S3×C32) = D9×3- 1+2 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.34(S3xC3^2) | 486,101 |
C32.35(S3×C32) = C34⋊C6 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.35(S3xC3^2) | 486,102 |
C32.36(S3×C32) = C34⋊S3 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 27 | | C3^2.36(S3xC3^2) | 486,103 |
C32.37(S3×C32) = C34.C6 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.37(S3xC3^2) | 486,104 |
C32.38(S3×C32) = C34.S3 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 27 | | C3^2.38(S3xC3^2) | 486,105 |
C32.39(S3×C32) = D9⋊He3 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.39(S3xC3^2) | 486,106 |
C32.40(S3×C32) = C9⋊He3⋊C2 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.40(S3xC3^2) | 486,107 |
C32.41(S3×C32) = D9⋊3- 1+2 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.41(S3xC3^2) | 486,108 |
C32.42(S3×C32) = C92⋊7C6 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.42(S3xC3^2) | 486,109 |
C32.43(S3×C32) = C92⋊8C6 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.43(S3xC3^2) | 486,110 |
C32.44(S3×C32) = D9×C33 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 162 | | C3^2.44(S3xC3^2) | 486,220 |
C32.45(S3×C32) = C32×C9⋊S3 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.45(S3xC3^2) | 486,227 |
C32.46(S3×C32) = C3⋊S3×C3×C9 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.46(S3xC3^2) | 486,228 |
C32.47(S3×C32) = C3⋊S3×He3 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.47(S3xC3^2) | 486,231 |
C32.48(S3×C32) = C3×C33.S3 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.48(S3xC3^2) | 486,232 |
C32.49(S3×C32) = C3⋊S3×3- 1+2 | φ: S3×C32/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.49(S3xC3^2) | 486,233 |
C32.50(S3×C32) = S3×C92 | central extension (φ=1) | 162 | | C3^2.50(S3xC3^2) | 486,92 |
C32.51(S3×C32) = S3×C32⋊C9 | central extension (φ=1) | 54 | | C3^2.51(S3xC3^2) | 486,95 |
C32.52(S3×C32) = S3×C9⋊C9 | central extension (φ=1) | 162 | | C3^2.52(S3xC3^2) | 486,97 |
C32.53(S3×C32) = S3×C32×C9 | central extension (φ=1) | 162 | | C3^2.53(S3xC3^2) | 486,221 |
C32.54(S3×C32) = C3×S3×3- 1+2 | central extension (φ=1) | 54 | | C3^2.54(S3xC3^2) | 486,225 |